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Association studies in populations that are genetically heterogeneous can yield large numbers of spurious associations
if population subgroups are unequally represented among cases and controls. This problem is particularly acute
for studies involving pooled genotyping of very large numbers of single-nucleotide—polymorphism (SNP) markers,
because most methods for analysis of association in structured populations require individual genotyping data. In
this study, we present several strategies for matching case and control pools to have similar genetic compositions,
based on ancestry information inferred from genotype data for ~300 SNPs tiled on an oligonucleotide-based
genotyping array. We also discuss methods for measuring the impact of population stratification on an association
study. Results for an admixed population and a phenotype strongly confounded with ancestry show that these
simple matching strategies can effectively mitigate the impact of population stratification.

Introduction

Genomewide association studies provide a powerful ap-
proach to implicate DNA variants (and, by extension,
the genomic regions they represent) in the predisposition
to complex diseases and in the genetic underpinnings of
drug efficacy and adverse reactions. The success of these
studies relies on the accurate measurement or estimation
of allele-frequency differences between case and control
subjects. When searching for small genetic effects in large
association studies, systematic differences in ancestry be-
tween the cases and controls are likely to produce many
statistically significant but spurious associations (e.g.,
Knowler et al. 1988; Lander and Schork 1994). Such
differences are expected to be found when genetically
distinct population subgroups have a different preva-
lence of the target phenotype.

The use of family-based association study designs mit-
igates the impact of systematic ancestry differences
(population stratification) but can lead to an increased
burden in the recruitment of subjects and in genotyping
(Cardon and Palmer 2003). Self-reported ancestry is
also useful in matching case and control subjects to
reduce the prevalence of spurious associations. Popu-
lation structure can be empirically determined by in-
dividually genotyping all potential cases and controls
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across a set of unlinked marker loci (Pritchard and Ro-
senberg 1999). When individual genotypes are known,
analysis methods can correct the association test statistic
for unmatched groups by use of the inferred population
structure (Pritchard et al. 2000b; Reich and Goldstein
2001; Satten et al. 2001; Thornsberry et al. 2001; Hog-
gart et al. 2003).

In association studies using DNA pooled from many
individuals, significant causal disease (or pharmacoge-
netic) associations would be indistinguishable from as-
sociations due to ancestry differences between cases and
controls. Thus, genetic-ancestry matching prior to DNA
pooling is essential. By use of inferred population-struc-
ture data, DNA pools can be constructed that are
matched to have similar genetic composition, to mini-
mize the likelihood of spurious associations due to pop-
ulation stratification. Allele-frequency estimates in the
matched DNA pools should then give a more reliable
indication of causal disease association. See the work
of Sham et al. (2002) for a recent review of DNA pool-
ing methodologies and implications for association
studies.

In genomewide association studies, it is necessary to
test at least hundreds of thousands of SNP markers be-
cause of the generally limited extent of linkage dis-
equilibrium in the human genome (Risch and Merikan-
gas 1996; Kruglyak 1999; Risch 2000; Patil et al. 2001).
We are currently testing >1.5 million SNP markers in
association studies, using pooled genotyping with mul-
tiple measurements of allele frequency in each of two
pools as an efficient screen to enrich for SNPs with
significant allele-frequency differences. The SNPs with
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the greatest apparent allele-frequency differences in the
pooled data are then selected for individual genotyping.
The pooled genotyping step reduces the number of SNPs
that must be individually genotyped to confirm allele-
frequency differences between case and control groups.
In this context, spurious associations due to population
structure force us either to examine more SNPs by in-
dividual genotyping or, if that is impractical, to sacrifice
power to detect causal associations.

In this study, we describe the use of unlinked SNP
markers to detect and correct for population stratifi-
cation in case and control subjects in an admixed pop-
ulation prior to pooled genotyping for association test-
ing. Using a phenotype that is strongly confounded with
ancestry, we show that several strategies for matching
case and control groups are successful at eliminating
significant stratification. We also discuss methods for
measuring the impact of stratification on a pooled ge-
notyping experiment.

Methods

Subject Collection

Subjects were chronic alcoholics, some with alcoholic
liver disease, recruited in Mexico City under full informed
consent. The international institutional review board of
the Instituto Nacional de Ciencias Médicas y Nutricion
Salvador Zubiran (INCMNSZ), which is registered with
the Office of Human Research Protection, approved the
human patient sample-collection protocol. Subjects were
measured for height in cm at the time of blood-sample
collection. The three self-reported ethnicities in this pop-
ulation were “Caucasian,” those of primarily Spanish Eu-
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Figure 1 Distribution of ancestry for self-reported population
subgroups. Density distributions for the inferred fraction of subjects
with cluster A ancestry are shown for 655 Mestizo, 23 Caucasian, and
29 Otomi Indian subjects. Each tick mark represents the fractional
ancestry of an individual subject.
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ropean ancestry; “Otomi” Indians, from the Pachuca re-
gion in Mexico; and “Mestizo,” a mix of Spanish
European and Mexican Indian ancestry. A total of 824
Mestizo males were examined to determine the distri-
bution of height. The definitions of “tall” and “short”
were chosen to include the upper and lower 25% of the
observed distribution. This yielded a minimum height of
174 c¢m for the “tall” group and a maximum height of
162 cm for the “short” group.

SNP Selection

From a genomewide collection of SNPs discovered by
Perlegen Sciences in a globally diverse panel of individ-
uals (Patil et al. 2001), we selected a set of 312 that
were roughly equally spaced across the autosomes and
were expected to behave well in oligonucleotide array—
based genotyping. SNPs were selected to be at least 150
bp from the nearest common repetitive element, as iden-
tified by the RepeatMasker 2 program (available on the
RepeatMasker Web site), and the 25-bp sequence con-
taining the SNP (+ 12 bases of context) was required
to be unique in the human genome, according to then-
current National Center for Biotechnology Information
(NCBI) Build 29 (available on the NCBI Web site). We
also required that in Perlegen’s previously collected SNP
discovery data, the SNPs have a high rate of high-con-
fidence genotype calls and an allele frequency close to
0.5. A combination of these quality metrics was used to
numerically score each candidate SNP. We then selected
the highest-scoring candidates from a series of 2-Mb
windows spaced at 9-Mb intervals across each NCBI
Build 29 chromosome.

Primer Design

PCR primer pairs for each SNP were selected using the
program Oligo, version 6.57 (Molecular Biology In-
sights). We selected primers having a T,, of 59°C-66°C,
a length of 18-22 bases, a PCR product size of 50-200
bases, and 3-end AG of between —35.5 and —9.8 kcal/
mol. We also required that each primer be at least 5 bases
from its target SNP. Primer sequences containing repetitive
sequences, as determined by the RepeatMasker 2 pro-
gram, were excluded. Only primer sequences determined
to be unique (P < 107*) in the genome (NCBI Build 29)
by use of the BLAST program (available on the NCBI
BLAST Web site) (Altschul et al. 1990) were selected.

Genotyping Oligonucleotide Array Design

Genotyping arrays of 25-bp oligonucleotides were de-
signed as four sets of 20 features (80 features per SNP),
corresponding to forward and reverse strand tilings for
sequences complementary to each of two SNP alleles. A
set of 20 features consisted of five sets of 4 features where
the location of the SNP within the oligonucleotide varied
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Table 1
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Quality-Control Checks for SNP Genotyping Results

Data-Quality-Filter Criterion

No. of SNPs Passing % Passing

Pass rate >80% 309 99%
Three genotype clusters identified 308 99%
<20 ambiguous calls 305 98%
P>.00001 for Hardy-Weinberg equilibrium 303 97 %
Maximum cluster width 282 90%
All criteria 275 88%

from position 11 to position 15. A set of 4 features con-
sisted of sequences where A, C, T, or G was substituted
at position 13. Thus, each set of four features provided
one perfect match to the sequence of the corresponding
SNP allele and three features with a single-base mismatch
for that allele. Mismatch probes were used to measure
background and, by comparison with the signal for the
perfect match probes, to detect the presence or absence
of a specific PCR product in a sample. Light-directed
chemical synthesis of the appropriate oligonucleotides
was carried out by Affymetrix (Fodor et al. 1991).

Hybridization Sample Preparation

For analysis of the 312 stratification SNPs, DNA was
amplified by PCR in 12-ul volume containing 13 primer
pairs at 0.4 mM of each primer, 10 ng of individual ge-
nomic DNA, 2 U Titanium Tag (Clontech), 0.5 mM deox-
ynucleotide triphosphates, 10 mM Tris-HCI (pH 9.1), 3
mM MgCl,, and additives. Thermocycling was performed
on a 9700 cycler (Perkin-Elmer), with initial denaturation
at 96°C for 5 min, followed by 10 cycles of 96°C for 30
s, 58°C minus 0.5°C/cycle for 30 s, 65°C for 1 min, then
40 cycles of 96°C for 10 s, 53°C for 30 s, and 65°C for
60 s, and, finally, an extension at 65°C for 7 min. PCR
products were pooled together and labeled with 0.7 uM
biotin-16-ddUTP/dUTP (Roche) with 25 units of terminal
deoxynucleotidyl transferase (Roche), by incubating at
37°C for 90 min, after which the reaction was stopped
by heat-inactivation at 99°C for 10 min.

Hybridization of Samples to High-Density
Oligonucleotide Arrays

Labeled DNA samples were incubated in hybridization
buffer (3 M tetramethylammonium chloride, 10 mM Tris-
HCI [pH 7.8], 0.01% Triton X-100, 100 ug/ml herring
sperm DNA, and 50 pM control oligomer) at 99°C for
10 min and hybridized to a chip overnight at 50°C on a
rotisserie at 25 rpm. Chips were washed twice in 1 x
MES buffer (0.1 M 2-[N-morpholine]ethane sulfonic acid
[pH 6.7], 1 M NaCl, and 0.01% Triton X-100), and
incubated with 5 ug/ml streptavidin (Sigma-Aldrich) and
2.5 mg/ml acetylated bovine serum albumin (Sigma-Al-
drich) in 1 x MES for 15 min on a rotisserie at room

temperature (RT). After two washes with 1 x MES at
35°C, chips were incubated with antibody solution (1.25
ug/ml biotinylated antistreptavidin antibody [Vector Lab-
oratories] and 2.5 mg/ml BSA in 1 x MES) for 15 min
on a rotisserie at RT, followed by another two washes
with 1 x MES at 35°C. Then, chips were stained with 1
ug/ml streptavidin-Cy-chrome conjugate (Molecular
Probes) and 2.5 mg/ml BSA for 15 min on a rotisserie at
RT, followed by two washes with 1 x MES at 35°C.
Chips were incubated for 30 min at 37°Cin 0.2 x SSPET
(30 mM NaCl, 2 mM NaH, PO,, 0.2 mM EDTA [pH
7.4], 0.01% Triton X-100), followed by a wash with 1
x MES at RT. Hybridization of the labeled sample to
the chip was detected using a confocal laser scanner (Per-
legen) (Patil et al. 2001).

SNP Genotyping

For each SNP, we measured ratios of the mean inten-
sity of perfect-match features for one allele to the sum
of mean intensities for both alleles. In principle, these
ratios should take on values near 1.0, 0.5, or 0.0 for
AA, AB, or BB genotypes. We discarded data if, for both
alleles, <9 out of 10 perfect-match features were brighter
than their corresponding mismatch features. We used an
expectation-maximization algorithm and a normal mix-
ture model to assign intensity ratios to clusters.

For the stratification analyses, we only used data for
SNPs that showed consistently good genotyping results
(table 1). We excluded SNPs that had a pass rate of
<80% on the basis of the perfect-match/mismatch com-
parison. We also excluded SNPs for which fewer than
three genotype clusters could be identified, as well as
those that had >20 ambiguous cluster assignments.
Many SNPs showed moderate departures from Hardy-
Weinberg equilibrium, which would be expected in a
heterogeneous population. We excluded only those SNPs
showing extreme deviations that could be traced back
to convergence failures of the clustering algorithm. For
the 275 SNPs passing these criteria, the overall call rate
was 98.4%. In a set of 24 individuals genotyped in trip-
licate for these SNPs, we had a concordance of 99.8%.
The 275 SNPs and all individual genotype data used in
this study have been submitted to dbSNP (ss12673803—
ss12674077) (available on the dbSNP Web site). SNP
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positions in NCBI Build 33 are also shown in table A
(online only).

Statistical Analysis

We used the structure program (Pritchard et al. 20004)
to identify population subgroups and infer admixture
information from SNP genotype data. All runs were
100,000 cycles, after a 20,000-cycle burn-in period. We
selected a model with admixture and with correlated
allele frequencies; we used the defaults for other settings.
We did not use prior information about population
membership to direct the clustering. Without this infor-
mation, the structure program cannot distinguish be-
tween solutions with permuted cluster labels; therefore,
we manually assigned labels to clusters, for consistency
across multiple analyses. Genetic distances (Fg;) were
calculated from structure’s allele-frequency estimates, as
in the study by Weir (1996). False-discovery rates were
calculated using Q-VALUE (available on the Q-VALUE
Software Web site) (Storey and Tibshirani 2003). All
other statistical analyses were performed with the R
package (available on the R Project Web site) (Ihaka and
Gentleman 1996).

Results

Assessment of Population Structure

A total of 707 individuals recruited in Mexico City
were selected for genotyping. The majority of subjects
(655) were of Mestizo (“mixed”) ancestry; small num-
bers of individuals of self-reported Caucasian (23) and
Otomi Indian (29) ancestry were also included. Using
high-density oligonucleotide arrays, we genotyped these
subjects for 312 uniformly spaced, unlinked SNPs. Of
the 312 markers, 275 yielded high-quality genotype
data. Many of the SNPs showed larger-than-expected
allele-frequency differences between the three subpop-
ulations, measured as an excess of small P values in x*
tests (table 2). Controlling for false-discovery rate (Sto-
rey and Tibshirani 2003), we also counted SNPs having
q values < 0.05 and found many significant associations.
The g value method accounts for multiple testing, and
it indicates the number of SNPs with significant asso-

Table 2

Association Test Results for Population Subgroups with 275 SNPs

NUMBER OF SNPs WITH x> TEST STATISTICS

P<.0001 P<.001 P<.01 P<.1 g<.05

Expected 0 0 2.75 275 0
Caucasian—Mestizo 2 5 23 85 8
Otomi—Mestizo 0 1 15 50 0
Otomi—Caucasian 3 14 34 105 32
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Figure 2 Distribution of ancestry versus height categories. Den-
sity distributions for the inferred fraction of subjects with cluster A
ancestry are shown for 164 short and 166 tall subjects. Each tick mark
represents the fractional ancestry of an individual subject.

ciations such that, on average, only 5% will be false
positives.

We analyzed this genotype data for population struc-
ture using the structure program (Pritchard et al. 2000a;
available on the Pritchard Lab Web site). This is a model-
based method for identifying subpopulations in which,
within each subpopulation, all markers are in Hardy-
Weinberg and linkage equilibrium. The analysis sup-
ported the presence of two genetically distinct popula-
tion clusters, one of mostly European ancestry (“cluster
A”), and one of mostly Indian ancestry (“cluster B”).
The estimated cluster-membership proportions for self-
reported Caucasian and Otomi Indian samples are well
separated; Mestizo samples are uniformly distributed
across nearly the full range of values (fig. 1). There was
no strong evidence for models with more than two pop-
ulation clusters. On the basis of their estimated allele
frequencies, we determined a genetic distance of F; =
0.14 between the two clusters. Phenotype information
and cluster-membership proportions for each sample are
reported in table B (online only).

The admixture model used in the structure program
assumes a unimodal distribution of individual admixture
proportions. However, we found that our inclusion of
small numbers of Caucasian and Otomi samples in the
analysis did not significantly perturb the admixture es-
timates for the Mestizo samples. A separate analysis of
just the Mestizo samples, which might be expected to
better fit the unimodal admixture model, yielded ad-
mixture proportions that had a correlation of 0.9994
with the full analysis (data not shown). Thus, this anal-
ysis seems to be robust against some limited misspeci-
fication of the admixture model.

Association of Ancestry with Height

We compared the inferred ancestry information for
individuals selected to represent the tallest and shortest
25% of male Mestizo subjects. Of the samples that were
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genotyped, we identified 164 short and 166 tall individ-
uals. Height is strongly correlated with the inferred pro-
portion of cluster A ancestry (fig. 2), and many spurious
allele-frequency differences occur solely as a result of
differences in ancestry between the tall and short groups
(table 4, all samples). This is an extremely stratified pop-
ulation, and there are multiple SNPs with x*-test P values
of <1078, This level of significance would exceed ge-
nomewide significance thresholds for 1 million indepen-
dent SNP association tests with conservative adjustment
for multiple testing, clearly a problem if these groups
were to be used in the type of genomewide association
study described above.

Matching Based on Average Ancestry Estimates

We composed new groups using subsets of the tall and
short individuals, so the groups would have the same
average proportions of ancestry in clusters A and B,
while retaining as many samples as possible. This in-
volved removing tall samples with the highest propor-
tions of cluster A ancestry and short samples with the
lowest proportions of cluster A ancestry. We were able
to retain 98 tall samples and 98 short samples with this
matching strategy. Ancestry proportions before and after
matching are shown in table 3. For a direct comparison,
98 samples were also selected at random from the lists
of tall and short samples. The random and matched
groups were tested for significant allele-frequency dif-
ferences (table 4, random and matched subsets). Match-
ing removed most evidence for population structure. An
overall test for stratification that was based on the sum
of x> statistics (Pritchard and Rosenberg 1999) for the
matched set gave a P value of ~.005, versus ~10~"" for
the randomly selected set. The distribution of P values
for the 275 SNPs is more nearly uniform for the matched
groups (fig. 3), and no markers showed significant as-
sociation after controlling the false-discovery rate.

In the previous analysis, the SNPs used to test for
associations were the same ones used for the stratifica-
tion analysis. Although the stratification analysis is blind
to the phenotype, in principle, this analysis could un-
derestimate the residual population structure expected
for other SNPs not included in the stratification analysis.
To address this, we split the 275 SNPs into five random

Table 3
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Figure 3 Cumulative distribution of P values for 275 SNPs, for

the random and ancestry-matched subsets of tall and short subjects.
In the absence of population structure, the P values should be uni-
formly distributed, and their cumulative distribution should be a
straight line from (0,0) to (1,1). The random subset shows an excess
of small P values, whereas the matched subset has a nearly uniform
distribution.

subsets of 55. For each subset, we performed a strati-
fication analysis of the other 220 SNPs, matched tall and
short groups on the basis of that analysis, and then tested
for association in the 20% that had been left out. Then
we combined results for all the subsets, yielding a test
result for each SNP stratified by use of what was, for
that SNP, an independent set of data. Results (table 4,
leave-out-20% data set) were essentially the same as for
matching on all 275 SNPs, and there were no significant
associations.

Matching Based on an Ancestry-Adjusted Phenotype

An alternative approach to eliminating stratification
for a quantitative trait is to define groups on the basis
of a phenotype that has been adjusted to remove effects
of ancestry differences. We performed a linear regression

Average Proportion of Ancestry in Cluster A, for Tall and Short Groups

PROPORTION OF

NO. OF SUBJECTS ANCESTRY
IN IN CLUSTER A IN
DATA SET Tall Group  Short Group  Tall Group  Short Group
All samples 166 164 .62 .36
Matched subset 98 98 48 48
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Comparison of a matching strategy with independently determined cutoffs for height and ancestry (A) and a strategy based on

a linear regression of height against ancestry (B). The samples retained from tall and short subjects by use of each method are shown as
blackened circles, and excluded samples are shown as unblackened circles. The regression method results in inclusion of the tallest and shortest

individuals within any narrow window of ancestry values.

of height against the inferred fraction of cluster A an-
cestry for the male Mestizo subjects in our study and
determined that a 10% increase in cluster A ancestry
corresponded, on average, to a 1.8-cm increase in height.
We adjusted height by subtracting out this contribution,
and we selected the tallest and shortest 98 individuals
on the basis of the adjusted phenotype. We did not see
any significant associations using these groups (table 4,
linear adjusted).

In principle, adjusting for ancestry should yield a
cleaner phenotype and a more powerful study design than
the simple strategy of matching the mean ancestry of case
and control groups. Comparing the distributions of height
and inferred ancestry for the two designs (fig. 4), the re-
gression design includes fewer individuals with relatively
mild ancestry-adjusted phenotypes and intermediate an-
cestry coefficients, and more individuals with extreme an-
cestry-adjusted phenotypes and ancestry coefficients. The
regression design may be more challenging to implement,
however, if it requires collecting genotype data for addi-
tional individuals to accurately determine the relationship
between phenotype and ancestry.

Effects of Population Structure on Pooled Genotyping

In many if not most association studies, if the target
population is relatively homogeneous, or if there is little
confounding between the target phenotype and ancestry,

then careful pool matching may not be necessary (e.g.,
Ardlie et al. 2002). Thus, it is useful to have a way of
quantifying the practical impact of population structure
on an association study, to decide when corrective action
is needed. Significance tests are not appropriate for this
purpose because they do not directly measure the mag-
nitude of an effect. One approach is to model population
structure as one of various sources of error that lead to
an increase in the false-positive rate. If the effect of pop-
ulation structure is determined to be small compared
with other known sources of experimental error, then
correcting for it will have limited benefit.

We examined the behavior of the sum of x* statistics
for association tests with data from the tall and short
groups matched for average ancestry, as various amounts
of random noise were added to allele frequencies in the
two groups. Genotypes for each SNP were first permuted
to eliminate any residual disequilibrium, so we essen-
tially only preserved overall SNP allele frequencies from
the original data. The allele frequencies for each pool
were then perturbed by a normally distributed error
term, with standard deviation specified in units of allele
frequency (fig. 5). The sum statistics for the unpermuted
random and matched groups (table 5)—that is, 928 and
338—are comparable to permuted data with additional
experimental error of ~5% and ~1%, respectively. Ad-
ditional error on the order of 1% seems tolerable for
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currently available pooled genotyping technologies,
which generally cannot determine allele frequencies with
better accuracy than that (Sham et al. 2002). This ap-
proach could be combined with estimates of experi-
mental variance components (Barratt et al. 2002) to pro-
duce more realistic end-to-end power estimates for
pooled genotyping study designs.

Genomic control (Devlin and Roeder 1999) provides
another approach to estimating the magnitude of the
effect of population structure in an association study. In
this approach, rather than modeling structure in a pop-
ulation, its effects are measured by the inflation of test
statistics for markers that, in aggregate, should not show
evidence for association. We estimated the variance-in-
flation factors (N\) due to population structure for each
set of tall and short groups by use of this approach. One
interpretation of the variance inflation is as a reduction
in effective sample size (ESS), which we estimate here as
(N / \), where N is the original sample size (table 5).
Genomic control would effectively maintain a desired
type I error rate in the presence of population structure
in this example; however, it does so at a substantial cost
in the ESS and, hence, power to detect causal associa-
tions. Our results show that matching to mitigate the
impact of population structure can substantially boost
the ESS, despite the reduction in raw sample count.

Discussion

Our results indicate that relatively simple matching strat-
egies can effectively control for population stratification
in case-control association studies, for a phenotype with
a very large ancestry effect in an admixed population.
The genotyping can be efficiently implemented in the
laboratory in a high-throughput setting, with a single
generic SNP genotyping array carrying around 300 uni-
formly distributed SNPs that are chosen without regard
to their allele frequencies in specific target populations.
We have now processed many thousands of these arrays.

Although we chose to use the structure program to
infer admixture proportions, other methods are avail-
able, including the ADMIXMAP program (available on
the Genetic Epidemiology Group Web site) (McKeigue

Table 4
Association Test Results for Height in 275 SNPs

NUMBER OF SNPs WITH x> TEST STATISTICS

DATA SET P<.0001 P<.001 P<.01 P<.1 g<.05
Expected 0 0 2.75 27.5 0
All samples 22 38 69 126 94
Random subset 10 20 44 106 62
Matched subset 0 0 7 35 0
Leave out 20% 0 0 6 39 0
Linear adjusted 0 0 4 44 0
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Figure 5 Effect of simulated experimental error on an overall

population-structure test statistic. We simulated the effect of experi-
mental error by adding normally distributed noise to allele-frequency
estimates in permuted copies of the genotype data for the matched tall
and short groups. The overall test statistic is the sum of resulting x*
statistics for the 275 individual SNPs; this is expected to follow a x*
distribution, with 275 df. We show results for 20 separate permuta-
tions for each value of the noise parameter.

et al. 2000; Hoggart et al. 2003), which may offer sig-
nificant benefits in some situations. The admixture
model in structure suffers from a theoretical deficiency
(Pritchard et al. 2000a; Hoggart et al. 2003), in that it
does not permit specification of prior allele-frequency
information for the ancestral populations and thus can-
not disambiguate between symmetric modes that differ
only in the labels assigned to clusters. Also, interpre-
tation of the admixture coefficients relies on the sampler
only exploring one of these symmetric modes. In our
analysis, we verified that individual structure runs con-
sistently settled in one (randomly selected) mode, and
we could easily determine consistent cluster labels when
comparing results across multiple runs. The matching
strategies we describe are also invariant under permu-
tations of the cluster labels. Still, it is possible that the
structure sampler may have more trouble in situations
with more clusters or less clearly separated ones.

In the context of a pooled genotyping screen, absolute
control of population structure is probably not required
in many cases. It is probably only necessary to ensure
that the incremental increase in variance due to popu-
lation differences between case and control pools is
small compared with other sources of variance in the
genotyping experiment. In an association study design
consisting of an initial screen of many markers by
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Table 5

Overall Measures of Population Structure for Height
Pools

Data Set x> Sum P Value N ESS
All samples 1,380 2 x 107 49 34
Random subset 928 8 x 107 3.6 27
Matched subset 338 5 x 1073 1.1 89
Leave out 20% 345 2 x 1073 1.4 70
Linear adjusted 313 6 x 1072 1.3 75

* Variance-inflation factor, calculated as follows:
median(x?)/0.456.

pooled genotyping followed by individual genotyping
of candidates, there should be more tolerance for spu-
rious associations in the pooled step. In these cases, a
test for population structure on a representative subset
of cases and controls may be sufficient to place bounds
on the impact of population stratification on the entire
study, thus avoiding unnecessary recruitment or indi-
vidual genotyping effort.

A complete association study would consist of three
phases. First, some or all samples would be individually
genotyped to ascertain their population structure using
our array of ~300 SNPs. On the basis of those results,
and constrained by the form of the phenotype and its
ascertainment method, a strategy for mitigating popu-
lation structure would be selected and validated using
the available genotype data. Both of our matching strat-
egies require genotyping some individuals who will end
up being excluded from the matched case and control
pools. The second phase would consist of pooled ge-
notyping of many SNPs in replicate experiments. In a
third phase, candidate SNPs would be selected for in-
dividual genotyping on the basis of the pooled data.
Samples originally excluded from the pools could be
genotyped at this point and could be analyzed using one
of the structured association approaches. Genomic con-
trol could also be used to adjust significance tests for
any residual population structure left in the matched
pools.

The matching strategies we discuss here were de-
signed for whole-genome association studies for which
we required that a solution could not increase the ex-
perimental effort required at the pooled genotyping
stage. This constraint (a practical, economic one) se-
verely limited the range of solutions that we could con-
sider. Another approach to controlling for population
structure would be to perform a stratified analysis of
subpools composed of individuals of similar ancestry.
For experimental designs permitting many replicates,
this may be a useful strategy for discrete traits that can-
not be adjusted to remove ancestry effects. Such a design
would allow all individuals to be included in the pooled
analysis; however, strata with very unbalanced repre-
sentation of the trait values would have somewhat lower
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informativeness for equal experimental effort. The num-
ber of strata required to account for most of the variance
in ancestry would multiply the experimental effort re-
quired for allele-frequency determination, since this
would be orthogonal to any replication required to
characterize experimental variance.

The strategies we describe can be extended to more
complex structured populations. For either admixed
populations or populations composed of several un-
admixed groups, our approach would be either to match
the average genetic contribution of each empirically
identified cluster in the case and control groups by ex-
cluding samples, or to use multivariate regression to
determine an ancestry-adjusted phenotype for each in-
dividual on the basis of the individual’s inferred cluster-
membership proportions. In the absence of admixture,
a multiethnic pooled study would be most sensitive for
detecting loci that account for phenotypic variation in
all of the included populations; such a study would be
insensitive for loci accounting for fixed differences be-
tween populations.

Admixed populations are attractive targets for as-
sociation studies because these groups should show
more linkage disequilibrium over larger physical dis-
tances (Chakraborty and Weiss 1988). If the admixture
is between populations with significantly different ge-
netic predispositions to a target phenotype, then heri-
tability of a trait in the admixed population may also
be higher than in the more homogeneous ancestral pop-
ulations. Although linkage-based admixture mapping
(McKeigue 1998) can be a more efficient approach for
identifying loci that specifically explain phenotypic var-
iance between populations, an association study in an
admixed population has the ability to detect loci that
explain variance either between or within populations.
Pooled allele-frequency differences would not distin-
guish within- from between-population associations,
but these could be resolved later by modeling ancestry
effects at associated loci by use of individual genotyping
data. The groups used in this study are small, and larger
sample sizes would be required for a whole-genome as-
sociation study of a complex multigenic phenotype. The
impact of stratification would be correspondingly larger
for more realistic study designs, because although sam-
pling variation in allele frequencies becomes smaller for
larger pool sizes, the variance due to population strat-
ification does not. Careful management of population
structure is likely to be an important component of fu-
ture whole-genome association studies.
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